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ne ighbour  distances in terms of  the angle subtended 
at the centre of  the sphere for the hard and soft cases. 
The hard data are a compi la t ion  from Clare & Kepert  
(1986), Kottwitz (1991), Lazic, Senk & Seskar (1987), 
Mackay,  Finney & Gotoh  (1977), Szekely (1974) and 
Tarnai  & Gaspar  (1983, 1991). 

The case of  N = 24 for rn = 1 produces a distorted 
snub cube which has three near -ne ighbour  distances. 
As rn is increased the three separate values converge 
to a single value approach ing  0.74420 for the true 
snub cube. Table 4 shows the convergence of  the 
distances with increasing power  of  m. 

I thank  Professor Alan Mackay  for helpful  com- 
ments and suggestions and Dr Tibor  Tarnai  for show- 
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Abstract 

Recently, Rius & Miravitlles [Acta Cryst. (1991). A47, 567- 
571] have shown the viability of simultaneously refining 
the phases of the largest structure factors by least-squares 
minimization of the quantity R=Y~HW(H)[F(H) 2 -  
Fcalc(H~2] 2 where the H summation extends over all 
measured reflections and w(H) is a weighting factor. Here, 
an alternative method of minimizing R by sequentially 
refining the phases 'Ph of the largest structure factors is 
suggested that takes advantage of the possibility of express- 
ing OR/O~h = 0 as an explicit function of ~Ph- 

Let the residual R be defined according to the expression 

R t ( ~  ) =Y, w(H)m(H)[E(H)E-E*(H)E~(H)]  2, (1) 
H 

0108 -7673 / 92/010069-02503.00 

or, alternatively, 

g2(~)  = Y~ w ( n ) m ( n ) [ E ( n ) - E ¢ ( n ) ]  2, (2) 
H 

where • represents the collectivity of phases 'Ph of the 
strong normalized structure factors E(H) and H denotes 
the measured reflections in one asymmetrical unit of the 
reciprocal space. The factor re(H) is the multiplicity of H 
and w(H) is the inverse of the variance associated with the 
difference E(H)2-Ec(H)  2 [or E(H)-Ec(H)] .  Applying 
Sayre's equation (Sayre, 1952), E~(H) may be approximated 
by 

E~(H) = E~(H) exp iq~ H = 0(H) ~ E(h ' )E(H-  h') (3) 
h' 

with E(b') and E ( H -  b') belonging to the set of strong E's 
and 0(H) a scaling factor. Obviously, the residual R will 
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be a minimum for the correct 4. The condition for an 
extremum of R ( ~ )  is 

aR/a~n = - 2  Y~ m(H) AE(H){E*(H)[aEc(H)/a~h] 
H 

+ [OE*(H)/OtPh]Ec(H) } = 0 (4) 

for every ~0h~ 4,  where AE(H) is w(H)[E(H)2-Ec(H) 2] 
for R1 or w(H)[E(H) - E~(H)]/[2E~(H)] for R2. By work- 
ing (4) out and assuming a non-centrosymmetric space 
group, one finds that 

0 = - 4 Y .  m(H)0(H) AE(H) 
H 

x ~, (O/O~h){E~(-H)E(hRs)E(H - hRs) 
s 

+ E~( -H)E( -hRs )E(H + hRs) 

+ E ~ ( H ) E ( h R s ) E ( - H -  hRs) 

+ E~(H)E(-hR,)E(-H + hR,)} (5) 

= - 4  • m(H)0(H) AE(H) 
H 

x E (a/atPh){E~(-HR-~')E(h)E(HR-~ t - h )  
$ 

+ E ~ ( - H R ~ - 1 ) E ( - h ) E ( H R ~  -t + h) 

+ E c ( H R ~ - t ) E ( h ) E ( - H R ~  -t - h) 

+ E~(HR~-I)E(-h)E(-HR~ -~ + h)} (6) 

= - 8  Y. 0(H') AE(H')(a/a~h){IE(-h)E~(H')E(h-H')I 
H' 

X COS (~_h '~-  ~H,"~- ~ h - H ' ) }  (7 )  

= - 8 E ( h )  E O(H') AE(H')[Ec(H')E(h-H')I 
H' 

x {-sin ~h COS (~n,+ ~h-U') 

+COS ~h sin (~n,+ ~h-n')} (8) 

where R~ is the matrix of the sth point-group symmetry 
operation and the summation over H' also includes the 
reflections related by Laue symmetry. By isolating ~0h in 

(8), the following tangent formula results: 

tph=phase of {~n, O(H') AE(H')Ec(H')E(h-H') }. (9) 

The correctness of (9) was tested on the same one- 
dimensional model structure described by Sayre (1952) and 
Rius & Miravitlles (1991) by using F values instead of E's  
in R t. The test calculations with these data showed that 
(9) was indeed able to refine phases, provided that it was 
only applied for laR/a~hl values greater than a threshold 
limit value (TLV), i.e. for laR/a~hl < TLV, the old value o f  
~h was assumed to be its new estimate. The best TLV was 
empirically determined. If it was chosen too small, the 
phase-refinement process became unstable. On the contrary, 
if it was too large, the refinement did not converge. 

Finally, combination of (9) with the conventional tangent 
formula of Karle & Hauptman (1956) leads to the improved 
tangent formula 

~ph = phase of {~ E(h ' )E (h -h ' )  

c ~ 0(H') AE(H' )E¢(H ' )E(h-  H ' ) / ,  (10) + 
H' J 

where the h' summation only involves the strongest E's, 
and the H' summation extends over all reflections. The 
practical application of (10) requires, however, the prior 
estimation of the scaling factors 0(H'), the weighting factors 
w(H') and the value of c at the different stages of the 
phase-refinement process. Practical results will be published 
elsewhere. 
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Abstract 

Form factors computed from extremely accurate wave func- 
tions are tabulated for H-,  He, Li ÷ and Be 2+ together with 
fits to Gaussian expansions of the standard form. 

Nearly exact ab initio form factors are available (Thakkar 
& Smith, 1978) for the hydride ion and other two-electron 
atoms. These were computed from extremely accurate wave 
functions (Thakkar & Smith, 1977) which allow for electron 
correlation by inclusion of many terms with an explicit 

dependence on the interelectronic distance. Although the 
form factors listed in the crystallographic tables (Cromer 
& Waber, 1974) were computed from Hartree-Fock wave 
functions which neglect electron correlation completely, 
they have continued to be used in crystallographic studies. 
Perhaps this is because the electron-correlated form factors 
(Thakkar & Smith, 1978) were given in the form of 
Chebyshev expansions and not in tabular form. 

Therefore, we present in Table 1 a listing of these highly 
accurate form factors for H-,  He, Li ÷ and Be 2+ in the same 
format as in the crystallographic tables. The correlated form 
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